
U" IIPHKÜ^^WTpipp^piB mmmwmmui ii ., i i .. _ i ui.» luiviip^wanpqpMiiqHPipMa^pwipaiPH llllllll -^«NMWP

AD-A012 544

AN EDITOR TO SUPPORT MILITARY MESSAGE PROCESSING PERSONNEL

Jeff Rothenberg

University of Southern California

Prepared for:

Advanced Research Projects Agency

June 1975

DISTRIBUTED BY:

KJ
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

 ^a^MUka^H,

•v^mmi^m^ ^ "lUP Il»il »^»^»WI^W^«

UNCLASSIFIED
•ICUNITY CLAUIPICATION OP THIS PAatrWh-> Data SnlMH)

Military mettage processing in an on-line environment requiret the flexible tools for
entering, editing, formatting, and annotating text provided by the Editor designed for the
Information Automation project. The Editor allows users to read documents or
mettaget on-line (providing tuitable browsing and scanning facilities); to enter text
(allowing simple correction of typographical errors); and to edit already existing text (in
any of several ways, including style changes, spoiling correction, reformatting and
reorganizing, at well as adding annotations or suggestions). Inexperienced or occasional
users can perform most editing tasks using a minimal set of simple commands, relying on
terminal controls and function keys for the most frequent operations. More
tophitticated utert can perform powerful editing function! with a handful of additional
commandt. The Editor it» closely geared to the tasks of message authorship and
coordination; in particular, it addresses the issue of communication among multiple
authors and coordinators by means of annotation facilities.

I

Ji UNCLASSIFIED
«CUWITY CLAMmCATlON OF THIS PkOlfWhtt Dttm BnUnd)

- —■■' -*a^- ■ - - —■ --- ■

marftuMfcitiiriii lutirn

P^V I . IIP*. IW^P^OT ■ianmvvanEnp^Hip W,. mill impijp^llj II) ^ »IWII p* i^^MRIMVVMMWIWHI^V^MMIMmH*«

/4ÄPi4 OKDEK NO. 2223

Wl RR-74 27
June 1971

Jeff Rothenberg

An Editor to Support Military Message Processing Personnel

INFORMATION SCIENCES INSTITUTE

UNIVEKSITY OF SOUTHERN CALirORNIA mr 4676 Aäniiuilty Way/Manna del Rey/Calijorma 90291

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHC1S 72 C 0308 ARPA ORDER
NO 2223 I, PROGRAM CODE NO 3D30 AND 3PI0

VIEWS AND CONCLUSiONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE

OFRCIAL OPINION OR POLICY OF THE UNIVERSITY OF SOUTHERN CALIFORNIA OR ANY OTHER PERSON OR AGENC- CONNECTED WITH IT

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

■Hi

-r- mp^^™' .1 i mi w^m^mmmmimimm m 'i " *m*i*mmmmm^*^

1

ill

CONTKWS

Preface v
Summary vii

1. Introduction I
Input Interfaro i
Low-Le'.el Editing 1
Full Editor 2

2. Editor-Related TasKs 3
Read 3
Enter Text 4
Modify/Edit Text S

Style (or Rewrite) Changes 6
Spelling Corrections 7
Format Changes 3
Restructuring 8

3. Basic Editing 9
Read 9

Move Cursor 9
Find (String) 10
Placemark //

Input Interface (Corrector) Compatibility/Enter 12
Editing 12

Cursor Motion 12
Text Modification 12
Text Replacement 13
Text Insertion 13

Cursor Motion Commands 13
Step Unit 13
Direction of Motion 14
Erase or Do Not Erase 14

Cursor Editing (Correcting) and Style Changes 14

mm^^am)tltmm —^j—— - ■••■■MMWHUUIiaa

i^MiPiipmip^pvmvwainHHMm^1 > ' i ! ' " '* »"v^mwmmmimi ui \mmi\, laitn . nu ■ ijH|pipimi^nn*i«iii««m>i lun umiBinr>JM'>-i iw. ww^mwrwr^^m

Contents iv

4. Editing Commands 17
Replace 17
Spelling Corrections 19
Formatting 20
Restructuring 22

Special-Purpose Sub-Editors 23
Names and Titles 24
Dates 25
Restricted Vocabulary 26

5. Issues 27
Coordination 27

Coordinator Options 27
Spelling Error 28
Style (Rewrite) 20
Structure (Format) 28
Minor 28
Content 29
Crucial 29

Examination Options (Viewing Changes) 29
Spelling Error 30

Style 'Rewrite) 30
Structure (Format) 30

Formatting 3/
Correcting (Cursor Editing) 31
Viewing Coordination/Edit Changes 32
Summary 32

Appendix
A. Editor Commands 33

B. Terminal Considerations 49

References 53

Bibliography 55

' - . - y»—„„j^^a—a

■*~^^~^~^'^~F^mmmmmmmmmamim*miw ' ■ m^^mm^mmmm^^mm^^^mm^mmmmm^^^^mm^^^^mi

PREFACE

This report is one of a planned collection of reports describing the current status
and plans of the Information Automation project. It is intended to be read by members
of the Advanced Research Projects Agency (ARPA), Computer Science specialists, and
medium- and high-level military personnel.

The Information Automation (IA) project [I] is currently developing methods to
automate various information handling tasks, with particular emphasis on message
processing for military command, control, and communications [21 The project is
sponsored by ARPA, and is an integral part of both the client's and ISI's overall program
to explore the use of computer technology and methodology in military environments.

Other project elements are referred to where appropriate, but are not defined
herein, since they are described in detail elsewhere. Because the Input Interface (or
Corrector) of the Command Language Processor (CLP) is logically the lowest level of the
Editor, the CLP document [3] should be read in conjunction with this report. In addition,
the Editor facilities are strongly motivated by the message processing service, so Ref.
4 should also be read as background for the present report.

For a more comprehensive discussion of other project elements, the reader is
referred to project documentation noted in the references

- -—-

""■- r*mm^*^^mm*~**mm I ^—^—-w-

SUMMARY

Military message processing in an on-line environment requires flexible tools for

entering, editing, formatting, and annotating text.

The IA Editor supports these functions pervasively throughout the service. It is
always available when the user is dealing with text, whether in the form of commands or

messages. It allows users to

• Read documents or messages on-line (providing suitable browsing and

scanning facilities).

• Enter text (allowing simple correction of typographical errors).

• Edit already existing text (in any of several ways, including style
changes, spelling correction, reformatting and reorganizing, as well as

aoding annotations or suggestions).

The Editor allows inexperienced or occasional users to oerform most editing tcsks
using a minimal set of simple commands, relying on terminal controls and function keys
for the most «requent operations. More sophisticated users can perform powerful

editing functions with a handful of additional commands.

The Editor is closely geared to the tasks of message authorship and coordination.

In particular, it addresses the issue of communication among multiple authors and

coordinators by means of annotation facilities.

-.., ^^^
iiniii ■ -

fmmmmm wmami i ■■ ■ i

I. INTRODUCTION

The Information Automation (IA) project \s concerned with the creation, management,
dissemination, storage, and access of text. In particular, it provides facilities for
manipulating, editing, and annotating text, formatting messages and documents, reading
and scanning soft copy, and correcting input, whether commands or text, as it is being
typed. It also provides multi-author text creation and coordination, commenting, and
annotation. Since most of th?s<ä functions must be available whenever a user is dealing
with text, they are concentrated in a single module called the Editor, which is always
available as part of the interface rather than being dispersed among different program
elements.

Editing may be viewed at three logical levels: the Input Interface, the low-level
Editor, and the full Editor.

INPUT INTERFACE

This provides intraline editing of the user's input, whether commands or text. This
is provided by the Command Language Processor (CLP) and is carefully
human-engineered to be as natural as possible (the actual interface varies depending on
the terminals used). The Input Interface (which is logically the first level of the Editor)
requires absolutely minimal training and has the flavor of actually "making corrections"
to the text rather than "issuing commands" to the Editor.

LOW-LEVEL EDITING

Because the intraline capabilities of the Input Interface are generalized to extend to
text in general (by means of the ability to move up and down through multiline text as
well as horizontally within a single line), the user is given the facility to perform most
editing tasks without the need for actual commands. The Input Interface is already
engineered to be natural, so this low-level Editor requires essentially no additional
training. It does not provide the full power of searching, moving blocks of text, or
replacing strings of text with other strings, but it does allow a beginning user to edit
text as soon as he starts using the service.

This level of the Editor also includes facilities to read text (browse and scan) and to
attach comments and annotations to documents.

.. _-^— .-, . , , _,.. iiiiifMi

» W ' mlmm mmmm^wm ^^^mmmmmmmmmm

Introfiuction

FULL EDITOR

This includes searching, replacing, formatting, block manipulation (moving paragraphs
Of text or rearranging sections of a document), multi-author, and full annotation
capabilities. It minimizes the number of distinct commands without going to the opposite
extreme of complex parameterization. Appendix A summarizes the actual commands.

«MMIMMI

T"" *ßm*mmm^m^*~* •s^-^mmmim '•■ " "■ WWiaaa

2. EDITOR-RELATED TASKS

This section discusses those tasks the user performs with the Editor. The functions
introduced here are disci ssed in later sections in greater detail.

The user has three primary classes of tasks for the Editor:

• Read
• Enter text

• Modify/edit text

The Editor functions are introduced in terms of these tasks.

READ

The Editor provides a protected Read capability which allows reading and moving
around in text without modifying it. This is used for reading delivered messages or for
scanning documents without modifying them.

The implicit command in this mode is "Show," which displays text in its fully
formatted output form. Normally, a full page of text is shown, though it may be
necessary to allow looking at smaller contexts while moving around in the text.

The user has basic "moving" functions which move a pointer that locates "where the
user is" in the text (hereafter, this pointer is not distinguished irom the cursor that
appears on the user's terminal, which shows him his place in the text on the screen).
The default is to show some text above and below the cursor, and this total context is
called the "display window." Only vertical cursor movements are enabled in this mode,
the basic ones being

• Move cursor to the top of the text
• Move cursor to the bottom of the text
• Move cursor up one screenful
• Move cursor down one screenful

, a... ^.^
 -

miB^mmmmr*^*^ mumm^^r^mm -" tim^mm^mr

Editor-Related Tasks

with additional optional functions:

• Move cursor up one "chunk" of text
• Move cursor down one "chunk" of text

("Chunk" is defined in terms of the structures used by the target community—for
example, it might be "paragraph", or "section". This allows fast browsing through text.)

The "up" and "down" functions are geared to the size of the screen to provide a
single-page movement with enough overlap to maintain context, e.g., two li.-'es on a
twenty-line screen. Alternatively, half-page moving may be better for reading on

certain screen sizes.

Two additional moving functions are allowed for somewhat more sophisticated users:

• FIND text
• PLACEMARK

Finding text involves a restricted version of the Search facility provided under
Modify/Edit (see below), consisting of the simple form "FIND <string>". This produces
an exhaustive search through the text for <string>. (Note that here the service-wide
commands UNDO and REDO can be used to make the user's job easier. The FIND
command displays the text found (if any) and moves the crsor to it; to reject this move
and return to the last position in the text, the user can simply UNDO. Similarly, to find
the next occurrence of <string> without having to retype the FIND command, the user

can REDO.)

The placemark is an optional feature useful primarily when dealing with large bodies
of text. It allows the user to insert placemarks and later return to the marked place in
the text. A PLACEMARK command is provided, which produces a temporary mark
(lasting only as long as the user is working on this text), and a FINDPLACE command
allows returning to a previous placemark. These are described in detail in Section 3.

ENTER TEXT

Whether he is creating a new document, commenting on an existing one (as a
reader), or inserting additional text when editing a document, the user always enters
text in the same way. Even at the simplest level of entering commands to the service,
the Input Interface (or Corrector) provided by the CLP offers the basic facilities for
correcting text as it is typed in. (The Input Interface is described in detail in Ref. 3,
but its capabilities are described in the folio* ing section for completeness.)

MM mmmm -

mmßm>m,>wmmm^imi«v mil »n m\ - ""■"'iw.iui ini «^m^mmn—mmmm i. i i i mim mm.i ^w^m^^g«

Editor-Related Tasks

When entering text, the user is able to back up easily into the text to correct
typographical errors. He is not required (though he is allowed) to first terminate
entering text, then use the editing commands to correct simple errors or rewrite what
he has typed. He can back up the cursor without erasing what he has already typed,
insert, delete, and overstrike, and return to the "end" (the last thing he had typed at the'
end of the text). (Note that this "end" may not be defined except in the simple case
where the user is creating a new document or text field which is clearly not yet
fin.shed. When the Editor cannot resolve where the "end" is, this command simply
causes a bell, and the user must reposition the cursor himself.)

When moving around in the text being inserted, the user can move backwards or
forwards within lines, with or without erasing the text that the cursor passes over. He
can move the cursor a character, word, or line at a time. Since he can erase with the
cursor, he can thus erase a character, word, or line at a time.

The Input Interface editing functions are a subset of those provided by the Editor.
The Editor is upward-compatible from the Input Interface. This service-wide
consistency provides uniformity and ease of use throughout.

Note that whether the user is entering text or editing, the Editor protects him
against losing more than a few minutes of work in the event of system failure. This is
done by checkpoint.ng the text (off to a secondary storage medium, e.g., disk). Several
conditions trigger checkpointing to insure that large amounts of text (anything greater
than one screenful) cannot be lost, and that complex editing sequences need not be
redone should the system crash.

MODIFY/EDIT TEX '

In order to make extensive or after-the-fact changes to text that has already been
entered, the Editor provides the user with several classes of commands, corresponding
to the kinds of changes he may want to make to text. These are

• Style (or rewrite) changes
• Spelling corrections
• Format changes
• Restructuring

These classes are described below. Later sections will return to the commands in
each class and discuss them in greater detail.

M - - -- • H i—

1 ■'■ ■ ■«p

Editor-Related Tasks

Stylt (or Retorite) Changes

This class includes many of the hard-to-categorize minor editing changes that are
made on paper with pencil and eraser. An example would be editing the phrase

"functions which move the pointer into the buffer"

to read

"functions which move a pointer that locates'where the user is' in the text".

This class is comprised of operations for inserting and deleting (similar to those

provided in the Corrector) and for replacing.

There is almost no difference between correcting text that is being typed in and
changing text already entered. In the case of entering input, the user is already in the
"Edit mode" which allows him to position the cursor and make changes by means of the
Corrector (Input Interface). In the case of editing (modifying) existing text, the user
must first enter the "Edit mode" and then make his modifications. This is done with an
"Edit switch" (or command). The Edit mode is also indicated on the display (see Section

5).

The cursor controls in this mode allow "fine" movement within pages and lines. In
particular, as for the Input Interface, the cursor can be backed up without deleting so as
to change (or delete, or insert) something earlier in the text, without having to retype

the intervening text.

The Corrector functions allow the editing of a line as it is being typed. The fine
vertical cursor movements (combined with the gross ones already described above
under Read functions) allow the same techniques to be applied to editing existing
multiline text. The beginning user normally edits text by beginning in Read mode,
moving around till he finds something to be changed, switching into Edit mode, zeroing in
on the spot to be changed by moving the cursor, correcting it just as he would have
when first entering it, and going back into Read mode.

Though the single insert function suffices for all but the most sophisticated types of
insertion (such as moving blocks of text around—which is provided by additional
commands described below), "Delete Character" is not sufficient even at the lowest
levels, and is supplemented by two (or three) other Delete functions: Delete Word and
Delete Line are identical to the Corrector deleting capabilities described ir. Section 3.

-___ MMM

w "''" ■ • ■■—«■ ■^■ '^-—^'^"■■Wi ■nw ——~-

Editor-Related Tasks

There is also an optional "Delete <Structure>," where <Structure> is defined for the
target community as required—paragraph, page, etc.

All Deletes are shown on the display, and can be undone by UNDO.

Style changes may also require the use of the REPLACE command. In its simplest
form, this is a powerful and easy-to-learn command which allows the user to "REPLACE
<stringl> BY <string2>B. Like the FIND command mentioned above, the REPLACE can be
UNDONE or REDONE. In particular, the user can easily iterate through a number of
similar replacements, examining each one in turn, by means of REDO.

The combination of the Corrector (cursor moving, insert, delete, and overstrike) and
the REPLACE command handles most of the editing tasks the user performs.

Though they are not used as frequently, the remaining classes of functions are
indispensable, and greatly increase the user's cor trol over the text he produces.

Spelling Corrections

Though the REPLACE command already gives the user the capability to correct
typographical or spelling errors, a special SPELLING command is provided which allows
the user either to make single corrections or to cause all occurrences of a word in the
text to have their spellings changed.

In addition to performing the replacement, this command marks these changes as
Spelling Corrections (for later reference by coordinators or authors—see below. Section
4), and it alerts the User Monitor [5] which considers entering this spelling error into
the service-wide lexicon of misspellings and typographical errors (see also Ref. 3).

- -- __

""""-" * « II I I

Editor-R»lated Tasks

Format Changes

The basic approach to formatting is to attempt to provide reasonably formatted text
without requiring that the user do anything explicit to produce formatting. This default
Automatic Format mode is described in detail in Section 3. The only actual format
commands availab'e to the user are those which override or turn off the actions of the
Automatic Formatter. These are

• Begin Literal (turns off Automatic Formatting in the text)

• End Literal (turns Automatic Formatting back on)

• Delete/Insert Paragraph Mark

• Delete/Insert Page Mark

The Literal feature allows the user to type text on his terminal in the format he
wants to see on output, and to have it appear exactly as it did when he entered it
(within the limitations of differing output devices). The Begin and End Literal allows this
Literal Format mode to be turned on and off again several times within a given
document. The parts of the document that are not under Literal Format mode are
formatted automatically, as usual.

Though paragraphs and page boundaries are handled automatically by the Automatic
Formatter, the user needs some way to modify this. The minimal set of commands:
Delete/Insert <Paragraph Mark/Page Mark> provide the control necessary to create
paragraphs and page boundaries explicitly when the user needs to do so. Most of the
time, however, these commands are not needed.

Rtttmeturing

Occasionally the user needs to rearrange text .or instance by moving a paragraph
to another place in the document, exchanging two sections, copying a sentence from one
place to another, etc. These tasks are difficult to perform without a special command,
since they would otherwise require large amounts of retyping.

The Editor provides the MOVE command to perform this task. The body of text to
be moved can be selected in one of two ways, both of which use the cursor controls to
point out a place in the text: either the user names the amount of text to be moved
(Word, Sentence, Paragraph, etc.) and points the cursor anywhere in the text to be
moved, or he uses the cursor to select the start and end of the text to be moved.

M-e—-M
 "^—^ ■■■-■-

rmmm^m^m •" «■■»«■■^«i nxn immiiwrmm^m^^m^^^t^Kr^^^ mmmmmmi

3 BASIC EDfTING

This section describes the commands the user needs for most tasks. These provide
a subset of the total capabilities of the Editor, and are sufficient for most editing jobs.
They are designed to be few and simple to learn. They are supplemented by the
commands described in Section 5, which deliver the full power of the Editor.

READ

The reading facilities of the Editor have been sketched above (Section 2).
Whenever the user is reading a document, whether his own, a delivered message, or a
message v/hich he is helping to write or coordinate, he is able to browse and scan
through the text with three major functions:

• Move cursor
• FIND text
• PLACEMARK

These functions are all available to the user whether he is reading or modifying
text. The only distinction is that when he is just reading (that is, when he is not in the
Edit mode), there are certain restrictions placed on what he can do. This protects him
from inadvertently changing text he only wanted to read.

The allowed functions for reading text operate as described in the following
subsections.

Move Curnor

This function is sufficient for reading text in most situations. A beginning user need
not be concerned with F'ND or PLACEMARK.

There are three ways the user can move the cursor through his text Each can be
applied either forward or backward.

• To the top or bottom of the text
• Up or down one screenful
• Up or down one "chunk"

,_.-
imm ■ ■■■ -■ ■

mii^mmmmm~irw~wr*i**mmmw*mßm mmm-

Basic Editing 10

The normal way to read text is to start at the top, where the Editor automatically
places the cursor when the user requests to read a document. The user then proceeds
downward one screenful at a time. The "up" and "down" movements rewrite a
screenful, Keeping a small amount of overlap to maintain context. That is, on a
twenty-line screen, the "down" command will normally rewrite the last two lines of the
previous screenful at the top of the screen, and add eighteen new lines at the bottom.
This overlap is easily disabled or changed for a particular target community or user,
being controlled by one of several Editor parameters stored for each user. (The
service maintains a User Profi'e for each user, which contains information about his
preferences for how the interface should work. For more detail on this, see Refs. 4, 5,
and 6.) Similarly, overlap is maintained whenever the user moves in either direction
to adjacent text. When one moves upward through the text, the overlap is displayed at
the bottom of the screen.

The "chunk" Move commands are provided for browsing through large bodies of
text, where one screenful at a time is too slow to locate the desired part of the text.
The definition of "chunk" is entirely up to the user community In general, it will
depend on the kind of structure commonly present in the text to be dealt with, and also
on the terminal and output device characteristics. For example, if reports with section
numbers are frequently encountered, the "chunk" might look for the next section either
forward or backward in the text. On the other hand, if documents are intended for a
hard-copy output device which produces pages (especially if these consist of several
screenfuls of text as it appears on the terminal), then "chunk" can move up or down to
the next page.

FIND <ttring>

This simple command allows the user to search for any <string> in the text. For
instance, "FIND < ship >" looks for the word "ship", "FIND <.>" looks for a period, and
"FIND < will be >" looks for the two words together. (Note that this is not meant to
represent the actual command form for FIND, since the command language (see Ref. 4
and 5) is dependent on the target user community.)

The normal case is to search forward through the text, below where the user is
pointing (that is, below the cursor). If <string> is not found by the end of the text, FIND
then looks backwards toward the top of the text, "his insures that FIND will always
find <string> if it occurs anywhere in the text, and that it will find the closest
occurrence to the cursor, first looking downward, then upward. The user can override
this strategy in several ways: he can go to the top or bottom of the text before using
FIND (to find the first or last occurrence of <string> in the text), he can explicitly ask
FIND to look backwards first, or he can ask it to look only forwards or backwards.

immm ■ ■ — ■ ■ ■ -..-^w

w*** ••" " iwmmmim^m' K1. " ' H' ■! I I '

Basic Editing 11

The default for the FIND cOinmand is that the user is looking through text which he
has seen formatted by the Automatic Formatter (see Section 4). Therefore, the user is
not expected to worry about whether two words are separated by a space, a carriage
return, a tab, etc. IMormiilly, the user delimits the <string> to be found, as, say,
< ward >, where the spaces around "ward" distinguish the fact the he is looking for
"ward" and not "towards". (If a particular user finds this delimitinf, confusing, he can
use the command FINDWORD, which automatically delimits <string>. The FIND command
looks for "ward" in the middle of a line, at the beginning of a line, and at the end of a
sentence (followed by a period). In addition, it looks for it at the beginning of a
sentence, which requires looking for "Ward" as well. The strategy with respect to
capitalization is that if <string> is typed by the user in lowe^ case, it will be matched as
"ward", "Ward", or "WARD" However, if the user typed it as "Ward" or "WARD", it is
only matched as typed. Similarly, in the above example ("CI^L) < will be >"),
occurrences with "will" and "be" separated by a carriage return are found, but "will.
Be" is nol considered a match.

All this matching strategy is dttigntd to alleviate the need for the user to think
about special cases. However, sometimes it gets in his way, and so the special
FINDEXACT command is supplied, which matches only what the user types for <string>,
exactly as he types it.

PLACEMARK

When the user is actually editing text, he can create his own placemarks easily
enough by inseiHng special characters ir, the text, and then searching for them to
return to the same place. For example, the user might insert Irewrite this! in the body
of a message, and might then return to it later with "FIND <!rewrite this!>". However,
he runs the risk of leaving marks like this around unintentionally to clutter up the text.
Further, this facility is not available unless he is in the Edit mode. He needs some
similar facility when in the Read mode, which does not make permanent changes to the
text. This is provided by the PLACEMARK and FINDPLACE commands.

PLACEMARK allows the user to make a temporary mark in the text wherever the
cursor is positioned. (In the Read mode, this can only be at the start of a line.
However, in the Edit mode, the cursor can be anywhere in the text, and the mark can be
placed in the middle of a line.) These marks are always temporary, and disappear when
the user finishes his editing session with this document.

In its simplest form PLACEMARK and FINDPLACE take no arguments. Every time the
user does a PLACEMARK, the previous placemark is erased and a new one is created.
Most of the time, this serves the user's needs fully, since he frequently just wants to

 - - ^^^„_. .

-w^R^«piiin,.uijMLiji..ii ii itBp»jpfc«w»»p IIJH»,I., in ^w^mnBvppwvvi^w^pimwppipp^nwpmiiiiipwili INI-" I I I »I' wi. i"1 »n

Basic Editing 12

Mep track of where ht was in the text while he goes off to another place in the rext to
check something. FINDPLACE returns him to where he last was, and he keeps this place
marked until he uses anothe** PLACEMARK command.

Occasionally, the user may want to mark several places in the text and move among
them, keeping them all marked separately at once. To allow this, the PLACEMARK and
FINDPLACE commands actually allow an argument which consists of a name for the place
marked. When the argument is omitted, as above, the null name (that is, no name) is
used, and there is only one placemark available. However, when the user needs
multiple placemarks, he can make up his own names for them. For example, he can use
numbers, and say "PLACEMARK (1), FINDPLACE (3)", which marks his initial location in
the text as PLACE (1), (erasing any previous placemark named "1"), and finds the place
marked as PLACE (3). Alternatively, he can name places "A", "b", "John", "Mary",
"important", etc.

All placemarks are temporary, lasting only for the duration of the editing session.

IIVPUT INTERFACE (CORRECTOR) COMPATIBILITY/ENTER

Much of the user's low-ievel editing is done while inserting text. This makes use of
the Corrector functions which allow backing up (with or without erasing) and making
insertions, deletions, and minor changes without using actual Editor commands. These
capabilities have already been discussed above (see Section 2).

The Input Interface, or Corrector (provided by the CLP), provides these editing
functions when inserting any text, whether commands to the service, or text for the
Editor. It is described here for completeness. For further discussion, see Ref. 3.

Editing

The Input Interface's editing commands are all activated by single keystrokes.
There are two classes of editing commands: the main class involves cursor motion and
variations on cursor motion, and the second provides keystrokes to delimit new text.

Cursor Motion. Each time the user hits one of the cursor motion keys, the cursor
moves one unit. With the simple motion commands, the user has easy access to any
part of his input text. The actual commands are discussed below.

Text Modification. Once the user has moved the cursor to the position in the
text at which he wishes to make a change, he needs facilities to actually change the
text.

^^^a^ma^^^mAäl^

ipfll^lll BV^BIPW.,- . >M*fP IllJ.IJIIIilll [«.I^HmiWipi HHW ',-^" m-m^^/ftm^^mm'^mmm^mmm^m

Basic Editing 13

r«ri Replacement. If the user types new text over old, the new text replaces the
old on a character-by-character basis. This facility is most useful for ristyped
characters. The user simply types the correct character over the wrong one. If the
user mistypes a word, he may back up to the start of the word with one cursor step,
then con'.inue typing from that word as if the error never occurred. Successive
characters will eliminate the incorrect word.

For the user to eliminate an extra character typed by mistake, he need only step
the cursor over it in the Erase mode and the character is deleted.

Text Insertion. Sometimes the user wishes to insert new text into already existing
text. There are two control keys which do that for him:

• Begin text insertion
• End text insertion

Any text typed between these two keys is inserted at the current cursor position
for insertion into a previously entered character string. The exact display strategy for
allowing insertion of text is highly terminal-dependent. This is discussed further in
Section 5.

Cursor Motion Commands

There are control keystrokes to move the cursor either backwards or forwards in
the current input character string. It is possible to move the cursor by large or small
steps. It is possible to have the cursor erase or not erase the text which it passes
over.

In effect, there are three different modes which characterize the way the cursor can
move: step unit, direction of motion, and erasing or not erasing.

Step unit. The unit of motion may be any of the following:

• A character.

• A lexical unit - i.e., up to the next punctuation sequence.

• A line.

• End of original insert - i.e., back to the end of the text
being inserted (when this is defined).

 - - -■■■■-
■-"---—■-"-

■7— — ^^*m ■^

Basic Editing 14

Direction of motion. The cursor might be moved backwards or forwards in the
text.

Erase or Do Not Eras«. The cursor pasnes over text. When in the Erase mode,
that text is erased; when not in the Erase modn, it is kept. The Erase mode is fleeting,
it is maintained for only one cursor movement. The user is protected from accidentally
erasing correct text after entering the Erase mode to erase an error. The actual keys
assigned to specific functions are determined by the physical terminal used. Thus the
function keys are named but not assigned codes in the following table.

KEY FUNCTION

Erase Enter the Erase mode. (Enter non-erase mode after the next action.)

Reverse Enter Backward mode. This is the base mode. The Input Interface is
in Backward mode at the start of each new input.

Forward Enter Forward mode.

Move Step the cursor in the mode direction by one character (and erase that
character if in Erase mode).

Move word Step the cursor by one word i.e., to the next punctuation character
sequence in the mode direction (and erase all characters passed over
if in Erase mode).

Move line Step the cursor to the end of the current line in the mode direction
(and erase all characters passed over if in Erase mode). If the cursor
is at the end of the current line, step, in the mode direction, to the end
of the next line.

The Input Interface editing functions are a subset of those provided by the Editor.
The Editor is upward-compatible from the Input Interface. This service-wide
consistency provides uniformity and ease of use throughout

CURSOR EDITING (CORRECTING) AND STYLE CHANGES

This forms the core of the text-editing facilities by extending the Corrector's
horizontal (intraline) cursor editing into two dimtnsions. The user performs
after-the-fact correcting (that is, editing) on existing rrultiline text simply by moving

MBMMM — - . ■_ —-. ■. -

Basic Editing 15

through the text and performing correcting functions. The dynamic display of the
editing pointer in the text (represented by the cursor) is absolutely necessary for this
kind of editing.

Correcting provides fine vertical movement and horizontal movement as well as
function-key Insert/Delete. It is always available in Edit mode. The cursor moves by
character locations, ignoring empty screen locations (though not ignoring explicit
blanks). This does not mean that blank lines are not shown, but backspacing the cursor
from one line to the last one does not involve backing through right-edge margin space
on the previous line.

The Corrector's cursor movements are further restricted by only allowing those that
are meaningful in the context of what the user is typing. That is, if the user is typing a
single-line command (all previous commands having been executeo and finished), it is
generally meaningless to "correct" the input by backing up to a previous line. Normally,
then, the vertical cursor movement of the corrector can be disabled in cases where it
makes no sense, causing a bell so that the user knows he is still getting a response.

The Edit mode can be invoked either implicitly, as when the user is typing a
command, or explicitly, at the user's request (with the Edit command). It can be used
either to create new text or to modify old text, normally after (or while) reading it.
Whenever the user is in this mode, the body of text being edited acts as if it was just
entered as an insertion. So the Corrector applies to it without distinguishing whether it
is part of a new insertion or of an already existing body of text. The Corrector (in
order to provide efficient correcting during insertion) requires minimal effort to change
text as it is being typed. Applying this to already existing text makes it easy to modify
text while moving around in it. This is unlikely to occur by accident, however, since the
cursor movements needed for reading are indenendent of the correcting movements, so
that there is no reason for the user to be "correcting" old text unless he actually wants
to change it.

Text is further protected by several factors:

• There is an explicit "Edit switch" that the user must turn on to allow
modifying existing text (this can be in the form of a command or an
actual locking switch on the terminal if that can be provided).

• Ideally, the cursor itself should indicate whether editing (modification) is
enabled (see Appendix B). If this is not possible, the Edit node is at
least indicated in a noticeable way on the screen.

MM. -••---- ■■ ■■■ -

Basic Editing 16

• The Editor will always be wooing on a copy of the text. The service
provides automatic checkpointing (see Ref. 7), allows backing up (via
UNDO) to earlirr intermediate versions, should the user do something

disastrous and unintentional.

• The service provides document protection which prevents unauthorized

modification of text.

- - rn^mm

17

4. EDIT im COMMANDS

This section provides more detail on the higher level commands provided by the

Editor. The beginning user should have no need for these commands, arid the basic

editing described above (Section 3) should account for most of the editing done with the

service. However, these commands are necessary to provide the full power required of

a text editor. The organization of commands follows the discussion of Editor-related

tasks in Section 2. Note that the actual forms of all commands shown below are merely

illustrative. The command language interface is not specified in detail until a careful

study of the user community is completed.

REPL/iCE

Certain kinds of style changes are most easily made using the REPLACE command.

This has already been mentioned above in its simple form (see Section 2). It is a

powerful and easy-to-learn command which allows the user to VEPLACE <ttringl> BY

<st^ing2>',. I ike the FIND command mentioned above, the REPLACE can bv UNDONE or

REDONE, so that the user can easily iterate through a number of similar replacements,

examining each one in turn, by means of REDO.

Whenever it is applied, the REPLACE looks for <sfrmgl> in the text (with the same

searching options and defaults as the FIND command described above in Section 3). if it

fails to find any occurrences of <stringl>, it reports failure, and leaves t.ie cursor

where it was before the user performed the REPLACE. If it finds <stringl>, it shows

the user what that occurrence would look like with the replacement made. He can

either accept that replacement or reject it. In either case, the cursor is repo-.itioned

after that occurrence, so that if he repeats the command (e.g., with REDO) it will not find

the same occurrence again, but will look for the next. If the user wants to reject the

replacement, and stop the REPLACE without moving the cursor, he can simply ABORT

The REPLACE command also allows the user to specify that he wants the command

to iterate for all occurrences in the text (with or without requiring his confirmation after

each one). Note, however, that the user can achieve the same effect with REDO, as long

as he is willing to confirm each replacement. Whenever REPLACE is performed

iteratively, it counts all occurrences of the strmg to be replaced and reports how many

there are to the user before it actually does the replacement. This helps the user catch

situations where he might otherwise inadvertently change fifty occurrences of "the" to

"this".

.■_... .

t$m^im*^a ■ ■■■■Il ■

Editing Commands 18

The REPLACE command can be UNDONE in two ways (the user is prompted 'or which
one he wants when he asks for UNDO): either all effects of the last REPLACE can be
UNDONE at once, or the user can step back through the iteration and UNDO selectively.

(Of course, for a noniterative REPLACE, these cases are the same.)

In the following examples, the command forms shown are merely illustrative. They
are not intended as examples of the actual command language used, since this is

different for different target communities.

To allow ...ore flexibility with less typing, the simple REPLACE <stringl> BY

<string2> is supplemented by the form

REPLACE <left> [<TEXr>] <right> BY <replace-TEXT>.

Here, <left> and <right> are optional fields which do not get replaced, but merely

provide context to identify <TEXT>. Thus the us«jr can say

REPLACE the quick [brown] fox BY red.

and get the result: "the quick red fox". This eliminates the extra typing of the simpler

form of REPLACE, which would require

REPLACE the quick brown fox BY the quick red fox.

The command also allows flexible matching of text with various special features in
the <stringl> (or <left> <TEXT> <righf>) part. For example, there is an ANY-TEXT
operator ("»") which can appear in the string to be matched. Thu«; the user can change

"This will probably be true" into "This is true"

by applying the command

REPLACE This [♦] true BY is.

Similarly, there are Restricted-text operators which allow matching punctuation
marks, separators (space, carriage return, etc.), numbers, and "special" characters (M,&,
etc.). These operators are augmented as needed for the target community if necessary.
There is a case-shift matching control like that described above for FIND, and a similar
feature at the character-by-character level within the match field (<strmgl>/. Finally,
the service-wide Quote character can be used to look for special control symbols and

characters (including itself).

^»Il" ^^m^^^m 1 mß in •*•«•• »^

Editing Commands 19

Capitalization at the word level is broken into four case-classes of words:

• All capitalized (example: "WORD")

• Starts with capital (example: "Word")

• All lower case (example: "word")

• Mixed (example: "DoD")

In general, the automatic case-matching preserves the case-class of the item

matched, when the replacement is performed. (For the mixed class, this is not generally

possible, and the command asks for user interaction to specify what should be done.)

Unless the exact form of the REPLACE is used, the command

REPLACE word BY item

will thus replace all of the following:

word BY item

Word BY Item

WORD BY ITEM.

Most of these features are not required most of the time by most users, but every

user will occasionally come upon a particularly messy editing task which can only be

performed by exploiting the full power of the REPLACE command (or else by painfully

going through the text line by line to look for all occurrences).

SPELLING CORRECTIONS

In addition to the REPLACE command, a special SPELLING command is provided which

allows the user either to make single corrections or to cause all occurrences of a word

in the text to have their spellings changed.

Aside from performing the replacement, this command also marks these changes as

Spelling Corrections (for later reference by coordinators or authors, see Section 5

below), and it alerts the User Monitor [5] which considers entering this spelling error

into the service-wide lexicon of misspellings and typographical errors (see also Ref. 3).

Whenever the user finds a mispelled word, he uses the SPELLING command to

correct it. The command prompts him by asking if he wants all occurrences of the same

error changed. If he answers "yes", the Editor proceeds to find and count all such

occurrences. If there are relatively few (five or fewer), the Editor reports how many

there are, and presents each one fo the user for confirmation. If there are more than

— ■ - ,

'fiu'üi mmww'^mmimmmm^*^,*^mmmm0m*^miimm***m*1 ^nwmnunimi ntm\MMmiv"m\im^*^mm^^^!mm**

Editing Commands 20

five, the Editor reports the number and asks the user if he wants to confirm each one,
or to have the Editor go ahead and do them. (This runs the risk of changing
occurrences of "to" into "too" by mistake, and the like, but this is at the user's
discretion. Here, as elsewhere in the service, the user is acknowledged as the source
of intelligence in the interaction. The service is merely a helpful, tireless slave.)

FORMATTING

The Editor provides all document-preparation facilities for the service. The
formatting philosophy is

1. Where possible, text is normally displayed in a formatted form, whether
it is a finished document or in the process o* being created or edited.

Line boundaries, filling and justification, tabs, etc. are processed and
output properly for the particular output device being used. (Note that
line printers should be able to simulate terminal characteristics or must
be as compatible as possible; however, when this i not the case, the
only problem is that hard copy does not correspond to soft copy, though
both are properly formatted.)

The ideal is to keep a default display of one page of text on the screen
during editing, as context, and to update this page as required (filling and
justifying, etc.) when the user edits, so that he can always see exactly
what he would see if he were to produce an immediate hard copy from
the text. (This is terminal-dependent. See Appendix B.) This requires
(in general) reprocessing text back to the previous paragraph every time
anything is changed, though th?re are some heuristics that can reduce
this amount of work (e.g., if th user changes "MONDAY" to "FRIDAY",
keeping the lengths of words cr.istant, the formatting stays the same).

2. The Editor produces acceptable document format without the user's
having to do anything at all about explicit formatting. Reasonable
assumptions (described below) are built in, to allow breaking lines only
at word boundaries, treating mutliple blank lines as paragraphs, etc. The
intent is that any input text will come out automatically as a reasonably
formatted document.

3. The user is allowed to perform "critical" formatting,, overriding the
automatic formatting to control the appearance of the final document by
"formatting by effect" (using the Literal Format mode described below),
essentially "drawing" the format on the screen.

-

mmmm 1 ' m ■"

Editing Commands 21

In order to produce formatted documents with no effort on the user's part, the

Editor embodies certain natural assumptions about the way most users type. These are

verified for a given target community, and alternate assumptions may be incorporated

instead with minimal effort, but the strategy given below is considered a reasonable
first approximation.

As the user types text, he is never required to consider the width of the line (of the

terminal he is using or of the output device he intends the ouput for, if this is different

from his terminal). Thus he never hau to worry about typing carriage returns or about

breaking words in the middle. The Editor automatically inserts carriage returns at word

boundaries, keeping a sufficient right margin to insure that this can be done in all but

the most extreme cases. (The service is intended for users who are trying to get work

done and so are assumed not to be interested in typing text like

"jk" just to see how the Editor handles it. When

such cases do occur, the line is simply broken (with a hyphen) at the extreme right edge

of the screen.)

When the user does type carriage returns, they are respected in two ways. First,

they generate new lines during input. That is, the Editor responds by showing the

effect of a carriage return when the user types one. Second, they are saved as part of

the text. Though the normal Automatic Format mode performs filling and justification,

and treats carriage returns, spaces, and tabs as equivalent, the user can invoke the

Literal Format mode (described in detail below), in which the carriage returns he

originally entered are again treated as carriage returns.

The use of two (or three) carriage returns is considered a request for a new

paragraph, and is treated this way in the Automatic Format mode, while a string of

(more than three) carriage returns is considered a request for a new page in Automatic

Format mode, when this makes sense for the output device being used.

Similarly, a string of leading spaces or a tab at the beginning of a line establishes a

standard indentation (even if the user doesn't count them carefully), and a long string of

spaces or tabs causes a line to be centered. In Automatic Format mode, when output is

produced, tabular data can usually be recognized (by the sequence of new lines and

indentat;ons with which they were entered), and a justified table is output, with decimal

points a'ligned for numeric data, where feasible.

The intent of the Automatic Format moae is to alleviate the need for the user to

have to think about format mott of the time. The processing performed is not

complicated for the most part, and does not produce startling results. Most of the time,

the user is unconcerned with the exact format of the output, and reasonable results are

^MMMM - — Ui**!—__

"^ "•w mmmm**~* tm

Editing Commands 22

accepted in return tor the reduced effort of not having to pay any attention to
formatting. The convenlnns used for Automatic Format mode (such as those suggested
above) are established for a particular user community after studying the equipment
and procedures currently in use, and are chosen to be as natural as possible, so that
users never have to think about them.

However, occasions still arise which require precise control of format and the
overriding of such automatic conventions as those assumed in the Automatic Format
mode. For these cases, the Editor provides the Literal Format mode to allow the user
to specify formats explicitly.

In later versions of the service, the Editor will interface to a document-preparation
processor (such as are ubiquitous in data processing circles) in order to provide
sophisticated formatting control. The present version, however, intended as it is for
the military message processing environment, does not warrant complex format
processing in the usual sense. It therefore provides the user with the simple option of
typing text on his terminal screen exactly as he wants it to appear in output, and then
inhibiting the Automatic Format processing whenever that particular document is output.
In order to provide somewhat more flexibility, this literal mode can be turned on and off
within a document, allowing parts of the document to br formatted automatically and
other parts to be output exactly as they were input*

RESTRUCTURING

Occasionally the user needs to rearrange text, for instance by moving a paragraph
to another place in the document, exchanging two sections, copying a sentence from one
place to another, etc. These tasks are difficult to perform without a special command,
since they would otherwise require large amounts of retyping.

The Editor provides the MOVE command to perform this task. The body of text to
be moved can be selected in one of two ways, both of which use the cursor controls to
point out a place in the text: either the user names the amount of text to be moved

* Military messages involve many strictly defined formats [1, 8]. These are
composed by means of the user's interacting with the message processing
service Functional Module itself [4], which simply leads the user through the
various fields and components of the required format, and composes these
parts into the finished, formatted message. The Editor is merely used to enter
text for each of these fields, and so is not responsible for producing the actual
format of the final message.

 ■ -

mm *^mmmmm _-~'-. ^mm "' "*

Editing Commands 23

(Word, Sentence, Paragraph, etc.) and points the cursor anywhere in the text to be
moved, or he uses the cursor to select the start and end of the text to be moved. The
cursor is then positioned once more to mark the place where the text is to be inserted.
The MOVE command can be REDONE to avoid having to repeat the process of picking up
the same text. Thus, the user can pick up a sentence, MOVE it back to where it came
from (by leaving the cursor where it is) and then REDO and select another location with
the cursor, to copy the sentence.

The MOVE commatid only holds onto the text picked up for the duration of the
command (though it can be REDONE). Often, however, the user wants to pick up part of
a sentence, rewrite the rest, and then put back the part he picked up earlier. To allow
this, the MOVE command has an alternate form, consisting of two separate commands:
PICKUP and PUT. These perform the two halves of the MOVE operation, and allow other
commands to be executed in between, without losing the text picked up. Performing
the sequence PICKUP, PUT is identical to the single command MOVE.

Like the PLACEMARK command described above (see Section 3), the PICKUP and PUT
commands have an optional argument which is normally null. By supplying a name (or
number) to the PICKUP and PUT, the user can name the text picked up, and can juggle
several pieces of text, putting them back together (or in different places) with PUT
commands.

SPECIAL-PURPOSE SUB-EDITORS

In using the message service, whether filling in specified fields of messages or
entering free text, the user may require special editing capabilities for spec.ai kinds of
data. In order of increasing specificity, the user may be dealing with

• Text (about which the service assumes nothing)

• Names (or titles) of people

• Dates

• Restricted vocabulary (such as security classifications)

The Editor is generally used to deal with the first class, namely free text. This can
be anything the user wants to type, and the service can make no assumptions about it,
and so cannot provide additional functions beyond spelling, style correction, etc.
However, each of the other classes presents additional constraints on what the user
may type, and therefore the Editor can provide additional functions in each case. In

" .iiiu.i. . , ., , mmmm

Editing Commands 24

some cases, the service Knows in advance that the user is entering data of one of these
classes, e.g., when the user is creating a message and the message processing service
Functional Module [4] asks the user to fill in a field that requires a date. In other cases,
the user is in the middle of entering free text, and he wants to enter a date as text:
here the Editor allows the user to ask for the same date-handling capabilities he is used
to getting when the service knows he is entering a date.

The functions provided for each of the last three classes above can be thought of
as subeditors and are described below (free text which is handled by the Editor itself).
In each case, the HELP and "?" functions (described in Refs. 3 and 6) allow the user to
ask for all allowable inputs or for an explanation of what he is allowed to enter.

Name* and Titlet

In many cases the user wants to enter the name of a person or a title. This occurs
when specifying addressees, coordinators, etc., and it may also occur when the user is
typing text and wants to refer to someone in the body of his text. The service cannot
be expected to know all possible names that the user might enter, but it can provide
help with names it does know about, such as other users of the service or names the
user has told it about in the past.

When the service knows that a name is being entered (as when the user is entering
a list of addressees), it automatically provides the user with the facilities of the Name
Sub-Editor ror other cases (as when the user types a name in the middle of free text),
the user can enter a NAME command to invoke the Name Sub-Editor.

The Name Sub-Editor provides the following capabilities:

• User-defined abbreviations (such as first names) can be supplied.

• Initials are accepted where they can be recognized by the service or have been
supplied by the user in the past.

• Names can be expanded to give full names (including initials), titles and ranks.

• Titles can be expanded to give names and ranks.

• Ranks of organization-oriented terms (like "the Colonel", "my boss" or "my
secretary") can be expanded to give names and ranks.

 ___ -J.- _ .. mi^

Wßm 11 ■11 MW ^ ■^^W^^i»»--« ■■ ^ ""Wl

Editing Commands 25

Note that in all cases, invoking the Name Sub-Editor allows examining the resulting
name before entering it as text. This means that the user can invoke this Sub-Editor
simply to check on a name (for instance, to look up who J6 is, by expanding that Mtle
into a name) and can then return to the text without actually inserting that name.

Note also that whenever the Name Sub-Editor is invoked, the user is assuming that
the service knows the name he is entering. (If the service does not know the name,
then the Name Sub-Editor cannot perform any useful function, since a name can
potentially be any arbitrary string of text.) The service interacts with the user to try to
match the name he is entering with one that the service already knows, and if this is
impossible, the service asks if the user wants it to remember this name for future
reference.

Dot c$

This is an even more restricted set of possible entries, since every possible date
known in advance. The Date Sub-Editor allows:

a. Any of a number of forms for specifying an actual date:

September 19, ^974
Sept. 19, 1974

19 September 1974
9/19/74
9-19-74

b. Giving the day of the week for any date supplied

c. Expanding relative dates:

today
yesterday
the third Sunday in October
last Wednesday
etc.

d. Accessing a (perpetual) on-line calendar:

In all cases, defaults are supplied where necessary.

- __, __ - - - --

T- mww mrwmm wr~m~mi Mj nmmiimmmm mm

Editing Commands 26

The year defaults to the current year if it is not supplied.

The Date Sub-Editor accepts any reasonable spelling or abbreviation to the names

of months or days of the week.

Ranges on dates are checked to prevent entering Septembsr 31 or Feb. 29, 1974.

Restricted Vocabulary

This class includes all cases where the user is entering one of a finite number of
choices known to the service, such as Security Classification, Special Handling, Message
Type, etc. Here, the service knows exactly which inputs are legal, and so it attempts to
match the user's input with one of the allowed ones. It can supply a menu of allowed
inputs when asked to by the user. The user can ask for descriptions of any of the

allowed inputs by requesting Help from the Tutor [6].

— MMHaMakata -• --1-- - -■-"■' J

r^m mimmi^^^m^mmmmmrv*." HIHI^WII h-1
wamm*rimmimm**Ki>'**~mm*'m"""' " mm

27

S. ISSUES

This section addresses a number of issues related to the message processing
environment for which the Editor is designed, in particular, multi-author and
coordinatic issues are discussed, and motivations are given for some of the strategies
presented above, with respect to formatting and cursor editing.

COORDINATION

Though the Editor 's designed to look the same to the user no matter what
text-handling job is being performed, there are certain special requirements placed on it
by the military message processing environment.

The message processing Functional Module [4] handles the restriction of different
classes of coordinators to different kinds of commenting or editing, and also leads the
coordinator through the message on a per-field basis, so that he can comment in detail
on fields other than the body of the message. The Editor simply provides the functional
capabilities for commenting on and editing fields of messages.

In particular, in order for a coordinator to edit a message in a way which will be
intelligible to other coordinators and to the author (see Ref. 4), the Editor provides
coordinators with several special commands to categorize the changes made.

On the other side of the coordination process, the Editor allows the author to
examine various categories of changes made by coordinators, so that he may select
which, if any, to incorporate into the final message.

Coordinator Options

Whenever a coordinator edits a message, he is really making suggestions to the
author (and to subsequent coordinators) as to how the message should look. He toes
this by working on a copy of the orignal message, entering whatever changes he f „»els
should be made. He has at his disposal all the editing facilities of the Editor and, in
addition, he has the capability of identifying the changes he makes under several
categories. The author (or other coordinators) can in turn look for changes under
specific categories (see Examination Options).

M^^M k^i ...-■-......—.^.. .^ . mi r IM" tämt

■piipnpapi^lPllllwi9FV*^^mi|MMm^^OTw~ PIIII«I imm

Issues 28

Whenever the user edits a message being coordinated, the Editor keeps track of
what type» of changes he makes. The user can also select one of several categorie$ to
alert the author (and other coordinators) to the significance of the changes he is making.
Each change which the user does not explicitly put into a category is placed by default

into the minor category.

The CHANGE-TYPES are:

Spelling Error. Every time a coordinator uses the SPELLING command, the Editor
records the command itself and each of the changes made by it, under this category.
Though the service itself does not enforce the convention, coordinators are generally
assumed to have verified their own changes so that the author need not repeat their

efforts by checking everything they have done.

Style (Retorite). This category is used for general rewriting changes. These can
involve arbitrary rearrangements, insertions, deletions and changes to text. When a
coordinator makes a $tyle change, the Editor automatically marks as changed the unit of
text that was involved. This allows the Editor to display the changed units to the
author on request (see below for Viewing Options). However, a small unit (e.g., word) is
always shown in context (e.g., the line containing the word) when displaying changes.

Structure (Format). These are changes consisting primarily of physical
rearrangements of paragraphs, sections, etc. (e.g., interchanging sections "1.3" and
"4.1"), or which affect the format of the message. They are distinguished from style
changes because they represent changes in the organization of a message rather than
in its writing style. They also generally require more context to be shown (or alternate
display strategies) when being viewed by the author (see below under Viewing

Coordination/Edit Changes).

The CHANGE-CATEGORIES allow the coordinator to tag his changes as being more or
less important. The author ran then examine changes by category. The categories are
"nested" in the sense that all CRUCIAL changes are also CONTENT (and MINOR) changes.

MINOR changes really include all changes.

The CHANGE-CATEGORIES are:

Minor. This is the default category. A coordinator may put changes into this
class simply by refusing to specify categories for them. Included in this class are all
changes in the CONTENT and CRUCIAL categories as well. This insures that the author
does not miss more important changes when examining minor ones.

 • HRP ' ' ' mmimm mm

Issues 29

Content. Here the coordinator calls the author's attention to serious changes,
affecting the sense of the message. All CONTENT changes are also automatically
categorized as MINOR changes. (Note that this category also includes all changes in the
CRUCIAL category described below.)

Crucial. This category is used for changes which the coordinator feels are major
changes to the sense of th*» message, inaccurate statements, objections, etc. It can be
used to point the author (0 those parts of the message which caused the coordinator to
sign off OK?, OK-, or NoGood (see Ref. 4). All CRUCIAL changes are also
automatically categorized as CONTENT and MINOR changes.

Examination Options (Vietoing Changes)

When the author examines a message that has passed through a coordination phase,
he has a number of options for viewing suggested changes made by coordinators.
Coordinators also have a subset of thesa options available. These options are included
under viewing.

Viewing is the ability to inspect all message fields. While viewing, the user has the
ability to see all previous comments and edits (hereafter called annotations)
incorporated into the message fields (either marked to delimit changes or unmarked),
with or without identification of the users who made them. In viewing, the user may
choose in which mfnner he wishes to view the various annotations, and the service will
provide reasonable defaults for those left unspecified.

The CHANGE-TYPES and CHANGE-CATEGORIES described above give the author (and
other coordinators) great flexibility in selecting what changes to look at. Tne message
service also distinguishes the following classes of annotations:

General Comments - These are contained in the comment text item
subfields of each reviewer entry (see Ref. 4). They can be assigned to
any of the CHANGE-CATEGORIES discussed above.

In-Field Comments - These comments are within any message field.
They can on!/ be created by advisors and authors. They include the
CHANGE-TYPES discussed above, and can be assigned to any of the
CHANGE-CATEGORIES.

Readers and releasers can only make general comments. The reviewers' viewing
default is to see the current state of the message. The authors' default is to see all
changes. This is to enable and encourage the author to pass judgment on the
suggested changes.

mm* .__ le-Mi

■ ii MIIIIP^^^«*^! i | ipa-«^^OTii m ii '—^—"»"

Issues 30

The above is discussed in detail in Ref. 4, and will not be repeated here. The
CHANGE-CATEGORiES supported by the Editor under the Coordination mode permit the
author to select any of the categories discussed in (1) above for any particular
coordinator or over all coordinators. (In addition, he can select the MINOR category,

which includes all changes.)

The following discussion addresses the author's (or coordinator's) options for

viewing selected types of changes.

Spelling Error. There are two options for viewing spelling changes. The actual
changes made can be displayed one at a time, or the SPELLING command thi was issued
to make the changes can be shown instead. This lattef option is used to see what the
correction ws>, without actually verifying every instance that was changed. As when
the SPELLING command is issued originally, the number of occurrences changed is also
shown. When actual instances are examined, the original and changed forms are both
shown. The exact display technique is highly terminal-dependent, and is discussed

he<9in.

Style (Rewrite). The Editor keeps track of the text affected by style changes, and
displays them to the author (on request), while showing sufficient context for him to
evaluate the changes. Again, the display techniques used are terminal-dependent.

Structure (Format). These changes are not easily displayed on any device that
can only show a limited amount of context (less than one typewritten page for most soft
copy terminals). The Editor allows the author to examine the moved text in its old and
new contexts. (Recognizing ihe difficulty of displaying certain types of restructuring,
the Editor also provides hard copy output with moved sections of text marked as such.)

These viewing options give the author a powerful tool for considering which
changes to incorporate. Some examples of the ways this can be used are

• Look at all CRUCIAL changes to the message,

• Look at all STYLE changes made by Col. Smith,

• Accept all SPELLING changes made by Captain Jones.

The author can thus delegate responsibility for certain tasks (such as proofreading)
without even having to check over the results unless he wants to.

-■ -

mmmmm»—mm*K^rmmmn ! ..,>■■,-.. i»,,,,— , ——„.^^i.,,. , ,,,,., „.. —-«■.. --.g..,-.—, ,■■.■■! ■ .. n- WP.»,.»»^.^«—■—■—

31

F0ÄA//I7T//VC

The strategy described above (Section 4) is intended to help the user produce
formatted text with minimal effort. An initial set of assumptions or conventions was
specified above. . nese are intended to produce reasonable formatting in most cases
for most target communities. However, realizing that the proper conventions depend on
many factors, including the work style and existing conventions of the target community,
the formatting requirements of the end users, and the terminals used, the Editor is
designed to allow redefining or overriding the default conventions discussed above.
The Automatic Format mode can be disabled entirely, and the Literal Format mode used
instead, if desired, though this is a retreat to manual formatting. Alternatively, the
formatting conventions (e.g., use of multiple carriage returns to signal new paragraphs
automatically) can be replaced by other conventions, or by more formal formatting tools.
(As mentioned above, later versions of the Editor will interface to document-preparation
processors capable of handling sopnisticated formatting tasks.) The Automatic
Formatting approach is considered well worth the attempt since it frees the user from a
time-consuming and uninteresting aspect of creating documents.

CORRECTING (Cursor Editing)

In this and the following section, it must be kept in mind that the service is intended
to use soft copy terminals such as television-like (CRT) terminals. The Editor is not
alone among the service elements in requiring the flexibility and relative speed of these
devices, as opposed to hard copy terminals. It is assumed further that the user has
access to output devices which produce hard copy when he needs it.

The use of cursor positioning and "direct" insert, delete, and overslrike editing is
contrary to the techniques used in many existing on-line editors. It was chosen for the
message service Editor because it relies more on self-explanatory keys on the terminal
than on the user's memorizing a set of editing commands. Tue success of this approach
is highly dependent on the terminal used (see Appendix B), but it has the advantage of
requiring minimal training in the basic use of the Editor. As discussed above (Section
3), the Corrector functions are sufficient for most editing tasks. The user need only
use the editing commands (Section 4) for relatively sophisticated editing, and these
commands are kept to a minimum.

The actual display strategy used for inserting, deleting, and overstriking (replacing)
text with the Corrector depends on the terminal used. The issues here are ones of
bandwidth and buffering capacities, and ideal solutions are only possible with ideal
terminals (see Appendix B).

 - nnnir..!.

Issues 32

There is no real question that what the user would like to see is simply the updated,

corrected text, displayed in its current state at all times. That is, when he deletes a

character from the middle o* a word on the top line of a twenty-line screenful of text

he would like the screen to flicker imperceptibly and to have the deleted character

disappear, with the others closing in to fill the gap. (If the text is being formatted

automatically, he would also like to see proper filling and justification performed

instantaneously.) This is not practical with most terminals, though it can be approximated

(without the reformatting) by some terminals which include "local" processing

capabilities. The limiting factor is generally the time needed (with standard data

transmission rates) to completely rewrite the screen with new text, starting at the point

where the user changed it.

VIEWING COORDINATION/EDIT CHANCES

There are further limitations which most existing terminals present in displaying

changed text, as when an author is viewing suggestions and changes made by

coordinators.

Here, the ideal is to display, side by side, the original and changed versions. Few

terminals can provide this ir. a readable way. The only reasonable alternative, for

certain classes of changes (e.g., long or complicated style changes, formatting, or

restructuring changes) is to display both version one above the otl er (or one after the

other in sequence), with suitable labelling. For other changes, a single copy of the text

is displayed, with the changed items highlighted in one of several ways (depending on

the terminals used). Candidate techniques for displaying such changes are reversed

video (printing black-on-white instead of the usual white-on-black used by most soft

copy terminals), bracketing the changed text with special brackets, underlining on the

terminal, double intensity, etc. (Note that blinking is not considered, since it is highly

distracting and hard to read.) One or more of these techniques are used by the Editor

for displaying simple insertion?, deletions, and replacements.

SUMMARY

The Editor describee above allows inexperienced or occasional users to perform

most editing tasks using a minimal set of simple commands, relying on terminal controls

and function keys for the most frequent operations. More sophisticated users can

perform powerful editing functions with a handful of additional commands. In keeping

with its role in the message processing service, the Editor is closely geared to the tasks

of message authorship and coordination.

^MMMMMIMMHI

33

Appendix A

EDITOR COMMANDS

The following summarizes the Editor functions. The actual command names and
forms are determined by command tables for the CLP, so that while the description
below is semantically accurate, it is merely suggestive of the ultimate syntax seen by
the user. The Editor is seen by all other processes as the function

EDIT (Modify, Call-type, Data-type, Destination, [Command-stream, Result])

Modify

Call-type

Data-type

Destination

Command-stream

Result

TRUE / FALSE

USER-EDIT / CALLED

TEXT / USER-NAME / MSG-ID / DATE-TIME

file-address

{ commands passed by calling module in CALLED mode }

{ passes result in CALLED mode }

The Modify switch allows calling the Editor in a restricted mode, so that no

modification to the accessed text is allowed.

CALLED is used for calling the Editor from some other module, performing the
specified "command-stream," and returning a "result." The User-Edit mode is the normal
mode with commands coming from the CLP and results going back through the CLP to

the user.

All functions which move the cursor refresh the display so the user always sees his
context. All function-key commands are noted by "!" The design of the Editor (and in
fact of the entire service) calls for a "logical" function box with cursor-moving and other
function keys. These functions may eventually be merged into the terminal, but at
present they are provided by an actual function-key box, the Auxiliary Keyboard and
Scope Multiplexor (AKSM).

MMBBH ■-■■ MBi

Appendix A 34

All commands (unless noted otherwise) can be undone by !UNDO and redone by
!REDO. The !REDO Key will also serve as a confirmation if the command was expecting
one. (A Command-Abort followed by !REDO will repeat the command without confirming
the previous instance.)

The Corrector's cursor-moving capability is used in three ways:

1. To correct Editor commands in the command window before executing
them.

2. To edit text displayed on the screen.

3. In conjunction with other commands, to allow selecting a position or string
of text by means of entering a cursor position explicitly. In order to do
this, the user moves the cursor to the desired location on the screen and
then hits the !HERE function key.

The commands below are given in Internal Form first. Following the formal
description, the User Form is given. If the latter is different from the former, square
brackets ([]) designate an optional field.

KEYSTROKE (CORRECTOR) FUNCTIOSS

EDIT (On/off switch)

When this switch is off, the Corrector controls (below) apply to the text in a
read-only mode. That is, the user can look through the text, but cannot modify it.

MOVE-CURSOR (Direction, Amount, Erasing)

Direction ::- LEFT / RIGHT

Amount CHARACTER / WORD / LINE / PARAGRAPH /

Erasing TRUE / FALSE

IIIM I —

Appendix A 35

Uter Form

These are all function-key commands. Keys are as follows:

ILEFT-CHARACTER
!LEFT-WORD
IUP-LINE

1RIGHT-CHARACTER
IRIGHT-WORD
IDOWN-LINE

All of the above are repeating keys. They can be "shifted" by an ERASE key which
moves the cursor and erases at the same time. When the ERASE key is depressed, the
MOVE keys do not repeat. In addition, there are the following keys, which are not
repeating and cannot be "shifted" to ERASE.

IUP-PARAGRAPH
IUP-SCREENFUL

IDOWN-PARAGRAPH
IDOWN-SCREENFUL

!ENTER/LEAVE INSERT-MODE (On/off switch)

When this switch is off, if the cursor is positioned in the text on the screen (outside
the command window), typing any alphameric character causes the cursor to return to
the command window to accept further commands.

!REFRESH-SCREEN

This eformats and redisplays on request (not usually needed, since screen is
automatif.ally reformatted frequently).

COMMANDS

A number of the commands below, including FIND and REPLACE, position the cursor
in the text being displ.-'/ed (as opposed to a command being typed in the command
window). These commands leave the cursor positioned in the text to allow Corrector
changes to be made, or to allow selecting the location with the !HERE key.

When the cursor is positioned in the text shown on the screen, only the Corrector
commands (including ÜNSERT) and the marking command !HERE are available without
moving the cursor to the command window. When ths user types anything else, the
cursor automatically homes to the command window, leaving the location in the text
marked. To select this marked location aasily after typing further commands, the !HERE
key can be hit when the cursor is in tne command window and it will return the cursor
to the last marked location. The Editor then asks for confirmation (either with a second
!HERE or with Command-accept).

 . .

Appendix A 36

/. Moving the Cursor

FIND (String,Type,Exact,Count)

Type ::- STRING / WORD

Exact ::- TRUE / FALSE

Count ::- TRUE / FALSE

A successful match always repositions the cursor and marks the end of the string
found. Successive FINDs will find successive occurrences.

Defaults are: Type - STRING, Exact - FALSE, Count - FALSE.

If String is defaulted, the last Find-String is used (that is, the last string used in a
FIND command that was successfully completed).

Case-independent matching is used unless the "Exact" mode is on. The Exact mode
can be set explicitly (by "EXACT", "E", or "TE"), but it is also set implicitly whenever
"String" contains any upper-case characters. In order to override this when
upper-case characters are entered by mistake, a "TN" resets the mode to be Not-Exact.

If "Count" is true, FIND returns a count of how many occurrences there are in the
buffer, and asks the user whether or not he really wants to see all occurrences (each
with context).

U$er Form

[Q] [<SP>] FIND [Q] <SP> Str

<SP> - (space)

Str ::- string / <Lptr , Rptr>

<Lptr , Rptr> designates a pair of cursor-positions selected by
the !HERE key.

Q ::■ Qc , Qe , Qw (in any combination, any order)

Qc ::- COUNT / C / ALL / A

'•'****~ ~" - ' - 'I ,.. j^JI-^JanHMMMH^j.-, , -'■ ■.„., : .

Appendix A 37

Oe EXACT / E / TE (/ TN for "NOT-EXACT", tne default)*

Qw WORD / W / TW

Examples: FIND giraffes' necks
FINDEXACT Giraffes' necks
WORD FIND giraffe

PLACEMARK ([Name], [Ptr])

Ptr

Name ::- string / NULL

gives a single cursor location. Normally the !HERE key is used to select
this location, but the user can also invoke a FIND command to select it.

This command places a temporary mark in the text the user is editing. The mark
can be named (to allow several places to be marked at once). Marks can reside in
several messages (or files or folders) at once to allow jumping back and forth between
them.

If the user does not supply a name for a placemark, the default (null) name is used.
Reusing the name of an existing placemark (e.g., the null name) erases the previous
placemark with th it name. Marks last only for the duration of the editing session.

If Ptr is not specified, the default is the current location of the text pointer.

Uier Form

[PLACE / MARK] [<SP>] [MARK / PLACE] ["name"]

Ptr ::- !HERE / TF

TF invokes a Find command and uses the resulting cursor
position as the selected location.

Examples: PLACEMARK
MARK PLACE "1"
PLACE "q"

• tW, TE, and TN can appear anywhere in the command, including within Str.

MMHMMMMMl -■

Appendix A 38

FINDPLACE ([Name])

Name ::- string / NULL

This command returns to the last place marked with this name (default is the null

name) by the last PLACEMARK command.

Uter Form

FIND [<SP>] < PLACE / MARK > ["name"]

Examples: FINDPLACE
FIND MARK "qH

//. Changing Text

REPLACE ([Left], Text, [Right], Replace-text, Type, Exact, Count)

Left , Right , Text , Replace-text ::- Str

Type ::- STRING / WORD

Exact ::- TRUE / FALSE

Count

Str

String

<Lptr , Rptr>
the WERE Key.

Ops

Op

::- TRUE / FALSE

::- String / String Ops / Ops String / Ops String Ops

::- String / <Lptr , Rptr>

designates a pair of cursor positions selected by

::- Op / Op Ops

i - ...^■-. ;;■-..—-...-

Appendix A 39

where
♦ any text
t any separator (space1CR,pe'iod,etc. ?)
« any digit or string of digits
& any special character

not some character or class of characters

Defaults are: Type - STRING, Exact - FALSE, Count - FALSE.

Any of the text fields {Left}, {Right}, Text, or Replace-text can be defaulted to the
last value used for the corresponding string in the last REPLACE command.

Every time a match is found, the old and new versions of the text in question are

displayed and the user is asked for confirmation.

The Count switch behaves as in the FIND command: it causes the number of
Occurrences to be counted and reported before any replacements are made, then asks
the user whether he wants to verify each replacement, to have them all done without

his seeing them, or to abort.

The Exact mode for the REPLACE command* is like that of the FIND command, with a

few more cases:

1. <Qe> or any upper-case characters in text force the entire command to

be Exact.

2. Upper-case characters in {Left) or {Right} apply only to the match within
Left or Right and do not force each other or the entire command into

Exact mode.

3. Upper-case characters or TE in Replace-text forces the replacement to
be Exact, but not the matching of text. (In this case, the command
expansion indicates that only the replacement is Exact, and a second TE
will force the entire command to be Exact so the user need not start
over. Alternatively, the CLP provides the !FIX key, which allows editing
the command itself, and so changing it to be Exact.)

* Like the FIND command, this command always marks the end of the matched or
replaced string and leaves the cursor there. The command can be IREDONE on

successive occurrences.

_iiMM^

Appendix A 40

For details on the handling of upper and lower case, see the "case-classes" defined
in Section 4.

U*«r Form

[Q] [<SP>] REPLACE [Q] <SP> [(Left}] Text [{Right}]
<BY> Replace-text <End>

<SP> (space)

Text, Replace-text, Left, Right siring / <Lptr , Rptr>

<Lptr , Rptr> designates a pair of cursor-positions selected by
the !HERE key.

{left} , {right} define context for text, but are no« replaced.

<BY> , <end> ::- Command-accept (but no» CR — ESC is ok)
[Replace works across line-boundaries.]

Q ::- Qc , Qe , Qw (in any combination, any order)

Qc

Qe

COUNT / C / ALL/A

EXACT / E / TE (/ TN for "NOT-EXACT", the default)

TW, TE, and TN can appear anywhere in the command, including
within Str.

Qw WORD / W / TW

Examples: REPLACE this is <BY> that was <end>
REPLACEW attitude <BY> altitude <end>
EXACT REPLACEALL thru <BY> Through <end>

SPELL (Incorrect, Correct)

Incorrect , Correct ::- string

-—______. mmmm -

Appendix A 41

This command performs the equivalent of

Replace (Incorrect, Correct, WORD, Not-exact, COUNT)

This will replace all occurrences of the word, regardless of case. Before making
any replacements, it counts the number of matches and reports the number to the user
(to help catch inadverter' errors affecting many words). It then asks the user if he
wants to confirm each occurrence or if he wants them to be done without confirmation.

In addition, the Service Glossary is updated to look for this error, and the change to
the message is noted as a Spelling Change. Both the "rule" itself (Incorrect.Correct) and
the actual changes made are saved for subsequent Viewing.

Defaults: either of the strings Incorrect or Correct can be defaulted to the value
of the corresponding string in the last SPELL command.

Ut«r Form

SPELL Incorrect <AS> Correct <end>

Incorrect , Correct ::- string

<AS> , <end> ::- Command-accept / CR / ESC / "."

Examples: SPELL thaanks <AS> thanks <end>
SPELL Usr <AS> user <end> (case is ignored).

PICKUP (Type, Pointer, [Name])

Type ::- STRING / WORD

Pointer ::- Ptr / <Lptr , Rptr>

Ptr gives a single cursor location. Normally the !HERE key is used to select
this location, but the user can also invoke a FIND command to select it.

<Lptr , Rptr> gives a pair of cursor locations. Normally the !HERE key is used to
select these locations, but the user can also invoke a FIND command to
select each location.

Name ::- string

■ ■—MMIf ■■■■■■ i ■ ■■ m^i - .. ^-_

Appendix A 42

This command picks up the delimited text and saves it under the (possibly null)
name. It also erases any string previously picked up under this name. The text can be
put somewhere else with the Put command. Note that this command has scope across
ASIDE commands, so that text can be picked up from one file (or message) and put into
another. The text delimited is marked on the screen. The optional name allows several

distinct pieces of text to be manipulated at once.

If Type - STRING, a pair of pointers is used to delimit the text. Otherwise a single
pointer is sufficient, since the type of object has been named. (That is, with Type -
WORD, a pointer anywhere within the word will PICKUP the entire word.)

If two PICKUP commands with the same (e.g., null) name are entered without an
intervening PUT command (or if a PICKUP command is IREDONE), a warning is given to
make sure the user is aware he is destroying the previously picked up text.

Ptr or Lptr can be defaulted to the current location of the text pointer.

t/f«r Form

[Q] [<SP>] PICKUP [Q] ["name"] Pointer

Q ::- WORD / W

Pointer ::- Ptr / Lptr , Rptr

Ptr !HERE / TF

Lptr , Rptr !HERE / TF

TF invokes a FIND command and uses the resulting cursor

position as the selected location.

Examples (prompting is shown in single parentheses):

PICKUP (between) !HERE (and) !HERE

PICKUP (between) tF ((FIND the man)) (and) !HERE

PICKUP "first" (between) !HERE
(and) TF ((FINDWORD multiple))

- ■ -— -■ — -■■ - '■""- -

Appendix A 43

PICKUPWORD (at) !HERE

PICKUPW (at) TF ((FINDW bout))

PUT (Ptr , [Name])

Ptr gives a single cursor location. Normally the !HERE key is used to select
this location, but the user can also invoke a FIND command to select it.

Name ::« string

This command inserts the text picked up by the last PICKUP command with the same
name. It requires only a single cursor position for inserting the text.

The text can be PUT several times, into several locations. After a PUT, the cursor
remains at the end of the inserted text. Two successive PUT commands will therefore
repeat a piece of text.

Ptr can be defaulted to the current location of the text pointer.

Uier Form

PUT ["name"] Ptr

Ptr ::- !HERE / TF

TF invokes a FIND command and uses the resulting cursor
position as the selected location.

Examples: PUT «HERE
PUT "first" TF ((FINDE banana))

SHOW ([name])

This shows the text picked up by the last PICKUP command using this name. The
default for Name is null.

Ut«r Form

SHOW ["name"]

-

Appendix A 44

Examples: SHOW

SHOW "first"

MOVE (Type, Pointer , Ptr)

Pointer ::- Ptr / <Lptr , Rptr>

Ptr gives a single cursor location. Normally the !HERE key is used to select
this location, but the user can also invoke a FIND command to select it.

<Lptr , Rptr> gives a pair of cursor locations. Normally the !HERE key is used to
select these locations, but the user can also invoke a FIND command to
select each location.

This is almost equivalent to performing the sequence PICKUP, PUT. The user is
prompted to supply cursor locations to delimit the source text and to specify the
destination.

If Type - STRING, a pair of pointers is used to delimit the source text. Otherwise a
single pointer is sufficient, since the type of object has been named. (That is, with
Type - WORD, a pointer anywhere within the word will select the entire word.) The
destination is always selected by a single pointer.

Ptr or Lptr can be defaulted to the current location of the text pointer, or the user
can default the entire source text location, forcing the Move to use the last Moved Text
and to copy it into the new destination. In this case, nothing is deleted. There are no
names for Moves, since they have essentially no scope, except for this special case (of
defaulting the source text). This defaulting need not be done immediately after the
previous Move. There is never any interaction between text saved by the PICKUP
command and text handled by the Move command.

User Form

[Q] [<SP>] MOVE [Q] Pointer Ptr

Q ::- WORD / W

Pointer ::- Ptr / Lptr , Rptr

Ptr ::- !HERE / TF

M——■——1 iHdihiiii 11

:

Appendix A 45

Lptr , Rptr !HERE / TF

TF invokes a FIND command and uses the resulting cursor
position as the selected location.

Examples ((rompting is shown in single parentheses):

MOVE ('rom between, »HERE (and) !HERE (to) !HERE

MOVE (from between) TF ((FIND giraffe)) (and) ü IFRF
(to) TF ((FIND banana))

MOVEW (from)!HERE (to) !HERE

MOVEWORD (from) TF ((FIND giraffe)) (to) !HERE

MtMcellaneous Command»

KIND-OF-CHANGE (Type)

Type ::- CRUCIAL / CONTENT / MINOR

This command lets the user tag his changes for the purposes of coordination. His
changes can then be reviewed by Type via the View command. Note that the
categories are nested so that Minor changes include ail Content and Crucial changts as
well. This insures that the more important changes are not missed when viewing the
less important ones. The default is (therefore): Type - MINOR.

Uier Form

KIND [<SP> / -] [OF [<SP> / -] CHANGE] [IS / - / <SP>] Type

lype :: MINOR / M / CONTENT / C / IMPORTANT /

Examples: KIND OF CHANGE IS CONTENT
KIND-I

VIEW (Change-type.Kind-of-change.By)

Change-type Spelling / FORM / OTHER / ALL

w^m-mmmmmm ^^mrnarm ■iira.ni mmmi^^^^ "" — ■■"i ■|""

Appendix A 46

Spelling RULE / INSTANCES

Kind-of-change MINOR / CONTENT / IMPORTANT

By <reviewer-name> / ALL]

This command allows selectively seeing changes made by reviewers. Selection can
be on the basis of who made the change, what kind of change it was, and what type of
change it was.

Defaults are to see all changes.

User Form

VIEW Change-type Kind-of-change By

Change-type

Kind-of-change

SPELLING / S / RULE / R / INSTANCES / I
FORM / F / OTHER / 0

MINOR / M / CONTENT / C / IMPORTANT / I

By ::■ <reviewer-name> / ALL]

BEGIN-UTERAL-FORMAT (Ptr)

This command allows turning off any automatic formatting, and insures that text wil
appear exactly as it is entered from this point on in the message.

Ptr can be defaulted to the current location of the text pointer.

L/jer Form

BEGIN [- / <SP>] LITERAL [- / <SP>] FORMAT

Ptr !HERE / TF

TF invokes a FIND command and uses the resulting cursor
position as the selected location.

END-LITERAL-FORMAT (Ptr)

IM ■ ■ ■

mmmmmmmmmmpwmmmm^-<»i" mj mm.mimmm*mmmmm^^**mmmK*mimm*mm*~m*~^m

Appendix A 47

This command turns automatic formatting back on.

Ptr can be defaulted to the current location of the text pointer.

Uter Form

END [- / <SP>] LITERAL [- / <SP>] FORMAT

•SPECIAL-EDIT (Data-type, String)

Data-type ::- USER-NAME / MSG-ID / DATE-TIME / <one-of>

When the user is filling in certain fields of messages, he is not dealing vith simple
free text. In these cases, the Function Module has alerted the Editor as to what kind of
data to expect. In these cases, the Editor supplies the recognition, validation, and
option-display facilities appropriate to the data-type being entered.

When the user is entering f^ee text (as in the body of a message), he can also
access these special-editing facilities for entering a special data-type, but he must first
alert the Editor that what he is entering is data of one of these types (which the Editor
is otherwise incapable of distinguishing from free text).

The !SPECIAL-EDIT key alerts the editor for one of these special data-types. In this
mode, the user has several options:

? equivalent to CLP "?" command: shows options for this data-type.

t recognition: expands input if valid

<brk> asks Function Module to validate the data. If not a valid entry of required
data-type, user can edit and try again. Any break character for this
data-type is accepted.

<eno> exits from the special mode, leaving the result in the text if it was valid
(otherwise the text is not affected).

In the cases of USER-NAME, MSG-ID, and DATE-TIME, the user simply enters a string
which the Editor passes off to the Function Module to validate and (possibly) recognize.

USER-NAME deals with names and titles.

mmmmm ^«■MfeMMft^

p ii up m^m*^ '>mi '"*••—*—m^mmm^^**imm9 \ tm i i ■■■■m

Appendix A 48

MSG-ID deals with message names/id's.

DATE deals with dates and times.

Defaults: the last data-type encountered and the last value of that data-type are
used if data-type or string are defaulted.

l/j«r Form

ISPECIAL [-EDIT] data-type string

--- ««_ - - - - - —— '• ■ ■ -^

■" ■ ■ ™- ■ ' *m^^m^mm*~~~' ■ <^m^r^t u mimm&^m^mmi***

49

Appendix B

TERMINAL CONSIDERAVIONS

Many aspects of on-line editing (and message processing in general) are strongly
affected by the terminals used. The military message processing service assumes
soft-copy (e.g., CRT/ terminals, but within this broad category, there are a number of
requirements and desiderata.

The following features are considered essential:

• High bandwidth (at least 1200 baud).

• Cursor control keys (single Keys for "up, down, left, right, home", which send
codes out to the computer). These should repeat individually, if possible, or by
means of a repeat button. (Note that some alternative means of positioning the
cursor (such as the SRI Mouse) are also acceptable here, and may in some cases
be preferable to cursor movement buttons.)

• Corresponding cursor functions (that can be sent from the computer to the
tarminal).

• Upper/lower case (with shift lock).

• Programmable function keys (that is, keys which send codes that are neither
alphameric characters nor assigned functions).

• At least one bell or similar "alert" mechanism (two distinct ones would be
desirable).

• Reverse video (black-on-white printing), two intensity levels, or underscoring (as
many of these alternatives as possible). This is necessary for highlighting text
changes, etc. Blink may also be useful for alerting the user to high priority items
on the screen, but is not a substitute for one of the above, since it is too
annoying.

-« r=
- ■ -■ ■

' "—" " ■" ■ ■" ' ^" ' -P...-M... ■ I ■ ! II.^.Hi ii.-i-», . I. .-— ——

Appendix B 50

• In addition, the following are desirable:

- Erase-to-end-of-line (sendable to terminal).

- Erase-to-end-of-screen (sendable to terminal).

- Cursor position read command.

- Tab character.

- Ability to disable any purely local keys.

- Multiple cursors/bugs (a symbol that can be left on the screen to mark something
- either under the line or by reversing video).

CURSOR

Read Mod«. In Read mode, underscore to left of the top (or bottom) line of the
page. Cursor always sits at the left of a line in this mode.

Edit Mode. In Edit mode, underscore under the last character typed, with an
arrow pointing up at the right to show where the insert goes. This insures that
deletions always affect the character (or word) over the cursor, whereas insertions
always be to the right of the cursor (preferably shown by the arrow). The cursor
itself in this ideal case indicates that the Edit mode is on, by the presence of the
insertion arrow.

FUNCTION KEYS

The following service-wide functions are always available, preferably as single,
!abi>!!Ad keys:

HELP
ABORT
UNDO
REDO (last command with same arguments)
RECALL (last command to allow editing and reissuing it)
CONTINUE (Mter an ABORT, etc.)
ALERT-CLP (gets the attention of the CLP)
"?" (for CLP, to ask for options available at any point)
SAVE (text and state)

„

 va* '- ' ' mmmmmBmw*****mm\ ii^^iw^ipwwwiipiiiipp*pp»wpii^P!^^iwii^wwrwpw«Bpi»™^-^i ■ Ml

Appendix B 51

When function keys are disabled (in certain contexts), the terminal should indicate
this by either physically locking that key (selectively), beeping, or having a light on the
key.

The Edit switch should be indicated either by a light or by the shape of the cursor
itself (as suggested above). The cursor might also be made to blink whenever the user
was in Edit mode as a warning.

^ ^^MMM-

f^mmim^mw**''*'!^************1*''**''*'**'**'**'^ Vimvumi' n. jiniipi mmwimim tm m.mnm »)mmw**m ■ ■ IR

53

REFERENCES

1 Oestreicher, 0. R,, J. F. Heafner, and J. Rothenberg, CONNECT: A U$«r-Oriented
Communication! Service, presented at ACM Annual Conference, San Diego,
Calif., November 1974.

2 Ellis, T. 0., L G. Gallenson, J. F. Heafner, and J. T. Melvin, A Plan for
Consolidation and Automation of Military Telecommunicationt on Oahu,
ISI/RR-73-12, May 1973.

3 Abbott, R. J., A Command Language Proceuor for Flexible Interface Detign,
ISI/RR-74-24, September 1974.

4 Tugender, R., and D. R. Oestreicher, BOHC Functional Capabilities for a Military
Message Processing Service, ISI/RR-74-23, May 1975.

5 Heafner, J. F., A Methodology for Selecting and Refining Man-Computer
Languages to Improve User's Performance, ISI/RR-74-?!, September 1974.

6 Rothenberg, J., An Intelligent Tutor: On-line Documentation and Help for a
Military Message Service, ISI/RR-74-26, May 1975.

7 Mandell, R. L, An Executive Design to Support Military Message Processing
Under TENEX, ISI/RR-74-25 (in preparation).

8 Fleet Operations Control Center, Pacific, Automatic Outgoing Message Processor
System User's Guide, FOCCPAC Document CM-02, 1973.

• ■■

pp^ «. IN jp ,m*nmif* "■ '" ' -^ >••*•<•>*• mmmr^^fmifimimm**» njm

55

BIBLIOGRAPHY

Eng«lbart, D. C, Watson, R. W., and Norton, J. C, "The Augmented Knowledge
Workshop," AFIPS Proc««dingt, National Computer Conference. Vol. 42,
pp. 9-21, June 1973.

Contains an outline of the general philosophy of ARC, including research
goals and strategies as well as historical details. Also has a
bibliography of ARC reports as well as influences on our work.

Engelbai , 0. C, "Design Considerations for Knowledge Workshop Terminals," AFIPS
Proc««dingi, National Computer Conference. Vol. 42, pp. 221-227, June 1973.

Contains description of the types of terminals and terminal interactions
required and available in the ARC environment and the motivations for
their development, as well as an extensive annotated bibliography.

Irby, Charles K, "Display Techniques for Interactive Text Manipulation." AFIPS
Proceedingi, National Computer Conference. Vol. 43, pp. 247-255, May 1974.

Discusses the ARC model for two-dimensional text tools based on
interactive display terminals and presents the primitives provided by
the conceptual display terminal interface to an application program.

Andrews, Donald I., "Line Processor—A Device for Amplification of Display Terminal
Capabilities for Text Manipulation." AFIPS Proceeding*, National Computer
Conference. Vol. 43, pp. 257-265, May 1974.

Describes the Line Processor Interface created at ARC to permit the use
of inexpensive alphanumeric video display terminals with NLS in the
model outlined in Irby's paper.

Mi

jff^fm^^^m^^^^mm^immii^^mmmmmmi. ' • i\mmmmm** >'>nx wmi —-^^m^mmmmmmm^mmmmmmm^mmtmKfmimm^mmim^wvm^mm'l^ 'P1 iii.i"...im

Bibliography 56

Engelbart, D. C, and English, W. K., "A Research Center for Augmenting Human Intellect."
AFIPS Proceedings, Fall Joint Computer Conference. Vol. 33, pp. 395-410, May
1974.

General presentation of ARC and NLS functions as they existed in 1968.
Much remains valid today, though of course our more recent project
reports and internal documentation supersede large sections dealing
with implementation details.

'- ■ ^—— ■ . ■■miMM mil in

